
Non-Intrusive Repair of Reactive Programs

David Harel, Guy Katz, Assaf Marron
Dept. of Computer Science and Applied Mathematics

Weizmann Institute of Science
Rehovot, Israel

Email: firstname.lastname@weizmann.ac.il

Gera Weiss
Dept. of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

Email: geraw@cs.bgu.ac.il

Abstract—We show how, under certain conditions, programs
written in the behavioral programming approach can be mod-
ified (e.g., as result of new requirements or discovered bugs)
using automatically-generated code modules. Given a trace of
undesired behavior, one can generate a relatively small piece
of code, whose execution is interwoven at run time with the
rest of the system and brings about the desired changes without
modifying existing code, and without introducing new bugs. At
the core of our approach is the ability of a thread of behavior
to prevent the triggering of events from other threads. Our
repair algorithms apply model checking to the program and
transform the counterexamples produced by the model-checker
into corrective modules. Our work is supported by a proof-of-
concept tool, which creates understandable modules that can
be further manually managed as part of ongoing incremental
system development.

Keywords-Program repair; verification; behavioral program-
ming; model checking; patching.

I. INTRODUCTION

Software maintenance is a difficult and error prone task.
As errors (bugs) are discovered, and requirements are added
or changed, developers work hard to modify existing code
without introducing new errors. They are often constrained
by limited knowledge of possible side-effects, since un-
documented interdependencies might be known only to a
different person (usually, the original developer) who is
unavailable, or have been simply forgotten. Research on
automated program repair, and, more generally, program
synthesis from specifications, aims to address these and
related challenges. Such automation may prove particularly
valuable for handling failure/bug reports from users who
press the “Send to Software Vendor” button. In such cases,
the software engineer cannot discuss with the user the
context of the problem, or possible generalizations thereof.

In this paper we focus on repair through the forbidding
of existing, faulty execution paths of programs written in
the behavioral programming approach. This technique is
highly suitable for (a) non-intrusive incremental repair; i.e.,
large parts of the system are already developed and are
not modified by the repair process; (b) methodological
integration of the repair process with standard, ongoing
development during and after the repair activity; and (c)
practical techniques for dealing with the complexity of the

use of model-checking when creating local patches in the
repair process.

II. BACKGROUND

Our work is carried out within the behavioral program-
ming approach [9], [10] — an extension and generalization
of scenario-based programming, which was introduced with
the language of live sequence charts (LSCs) [4], [8], and is
now implemented also in Java [10] and Erlang [11], [22].

b-thread

b-thread

b-thread

b-thread

Requested Events

Blocking

Selected Event

Figure 1. Behavioral programming execution cycle: all b-threads synchro-
nize, declaring requested and blocked events; a requested event that is not
blocked is selected and b-threads waiting for it are resumed.

A behavioral program consists of independent threads of
behavior that are interwoven at run time. Each behavior
thread (abbr. b-thread) specifies events and event sequences
which, from its own point of view must, may, or must not
occur. As shown in Fig. 1, the infrastructure synchronizes
and interweaves all behaviors, selecting events that con-
stitute integrated system behavior without requiring direct
communication between b-threads. Specifically, all b-threads
declare events that should be considered for triggering
(called requested events) and events whose triggering they
forbid (block), and then synchronize. An event selection
mechanism then triggers one event that is requested and not
blocked, and resumes all b-threads that requested the event.
B-threads can also declare events that they simply “listen-
out for”, and they too are resumed when these waited-for
events occur.

This facilitates incremental non-intrusive development as
outlined in the example of Fig. 2.

More detailed examples showing the power of incremental
modularity in behavioral programming appear in [10], [11].
Briefly, in a program we wrote for playing Tic-Tac-Toe [10],

wait for
WaterLevelLow

request
AddHot

request
AddHot

request
AddHot

WhenLowAddHot

wait for
WaterLevelLow

request
AddCold

request
AddCold

request
AddCold

WhenLowAddCold

wait for
AddHot while

blocking
AddCold

wait for
AddCold while

blocking
AddHot

Stability

⋯
WaterLevelLow

AddHot

AddCold

AddHot

AddCold

AddHot

AddCold

⋯

Event Log

Figure 2. Incremental development of a system for controlling water level in a
tank with hot and cold water sources. The b-thread WhenLowAddHot repeatedly
waits for WaterLevelLow events and requests three times the event AddHot.
WhenLowAddCold performs a similar action with the event AddCold, reflecting
a separate requirement, which was introduced when adding three water quantities
for every sensor reading proved to be insufficient. When WhenLowAddHot and
WhenLowAddCold run simultaneously, with the first at a higher priority, the runs
will include three consecutive AddHot events followed by three AddCold events.
A new requirement is then introduced, to the effect that water temperature should be
kept stable. We add the b-thread Stability, to interleave AddHot and AddCold
events. For details about how sensor and actuator b-threads interact with the physical
environment (sensors, valves) without suspending the entire system see [11].

each game-rule is implemented in a dedicated b-thread; e.g.
“block X moves when it is O’s turn’’ or “block marking
of already-marked squares”. Similarly, player-strategy mod-
ules are oblivious of other strategies; e.g., “wait for two X
marks in the same line, and then request marking O in that
line”. A similar technique can be used to control a robot
performing simultaneous missions, such as vehicle operation
and route management. In stabilizing a quadrotor — an
unmanned flying vehicle with four rotors — each of four
b-threads in our program controls a particular orientation
angle, or the quadrotor’s altitude, solely by changing rotor
speeds; see [11].

Each b-thread repeatedly requests and blocks events repre-
senting possible increases or decreases of rotor RPM, which
could contribute to its own goal. The triggering of an event
that is requested by one or more b-threads and blocked
by none allows at least one b-thread to progress. Affected
b-threads can then recalculate their declarations of requested
and blocked events, and the process repeats.

In [6] and [13], model-checking and planning algorithms
(respectively) are applied to play-out, the method for ex-
ecuting LSCs. These smart play-out techniques control the
choice of the event to be triggered, such that, within the next
superstep (i.e., prior to the next event driven by the environ-
ment), the specification is not violated by the program (if
this is possible). In [7], a proof-of-concept model checker
verifies behavioral Java programs “in vivo” - without first
translating them into a model-checker-specific language. It
is further shown in [7] how, when a problem is detected, the
programmer can develop and add a b-thread that repairs the
program by refining the behavior without modifying existing
code.

III. OUTLINE OF THE REPAIR APPROACH

In the present paper we utilize the model checker of [7]
to automate elements of manual program-repair processes,
using a principle that can be summarized as “taking the road
not taken”. For illustration, assume that a system was tested,
or even model-checked, to satisfy its specification, and a
new requirement was then introduced, or a bug reported,
highlighting a required property not previously articulated,
and thus neither tested nor model-checked. Our method calls
for first adding the new property to the specification. We then
model-check the program to find distinct violating runs. For
each such run, we add a special b-thread, which waits for the
sequence of all events in the run, up to the last one requested
by the program (rather than by the environment). The repair
b-thread then blocks this event. Some other pending requests
might then be triggered. If this does not correct the problem,
the process repeats.

For example, consider a faulty game-strategy b-thread,
whose event request leads to a loss. When this event is
blocked, another b-thread, perhaps one that requests a set
of default moves, comes into play (so to speak), offering
an alternative. The elimination process continues until “the
right” default move is the choice at that state. The new
corrective wait-and-block behavior is non-intrusive, in that
its implementation does not require changing the existing
program code.

We refer to such a repair b-thread as a patch, and to
the process as patching, or simply, repairing. We hope that
combined with the behavioral-programming principles, our
approach will help make the concept of patching seem less
a “necessary evil” and more a useful, mainstream software
maintenance practice.

As full program repair may not always be possible, due
to the state explosion problem, we also discuss the case
where patching can be limited to a bounded “neighborhood”
of a specific operation scenario; for example, when we are
provided with a bug report sent from a user.

We formally prove correctness and analyze the method,
characterize the programs on which it can be used, and
exemplify its usage with our proof-of-concept tool.

The rest of this paper is organized as follows: basic
definitions of behavioral programs and their model-checking
are given in Sections IV and in Section V, respectively.
The repair of loopless programs is discussed in Section VI,
followed by a repair algorithm for general programs in
Section VII. Finally, limited-depth patching is described in
Section VIII. Each of the three repair algorithms is followed
by a concrete example.

IV. DEFINITIONS

While behavioral programming is geared towards natural
and intuitive development using almost any programming
language, its underlying infrastructure can be conveniently
described and analyzed in terms of transition systems.

A. The Behavioral Programming Computational Model

The definitions below follow [7], [11] and were modified
to include the notion of a b-thread tagging states of the sys-
tem as having certain properties, commonly termed atomic
propositions (AP) [2]. Recall that a deterministic labeled
transition system is a 6-tuple ⟨S,E,→, init,AP,L⟩, where S
is a set of states, E is a set of events,→ is a (possibly partial)
function from S ×E to S, init ∈ S is the initial state, AP is
a set of atomic propositions, and L ∶ S → 2AP is a labeling
function. The runs of a transition system are sequences of
the form s0

e1Ð→ s1
e2Ð→ ⋯ eiÐ→ si⋯, where s0 = init, and

for all i = 1,2,⋯, si ∈ S, ei ∈ E, and the function → maps
the pair ⟨si−1, ei⟩ to si, written si−1

eiÐ→ si. We say that
⟨S,E,→, init⟩ is total if the function → is total.

Behavior threads are modeled as transition systems, with
S, E, and AP finite, and the states being associated with
event sets:

Definition 1. A behavior thread (abbr. b-thread) is a tuple
⟨S,E,→, init,AP,L,R,B⟩, where ⟨S,E,→, init,AP,L⟩
forms a deterministic total labeled transition system, R∶S →
2E associates a state with the set of events requested by the
b-thread when in it, and B∶S → 2E associates a state with
the set of events blocked by the b-thread when in it.

Definition 2. The runs of a set of b-threads {⟨Si,Ei,→i

, initi,APi, Li,Ri,Bi⟩}ni=1 are the runs of the labeled tran-
sition system ⟨S,E,→, init,AP,L⟩, where S = S1×⋯×Sn,
E = ⋃n

i=1Ei, init = ⟨init1, . . . , initn⟩, and → includes a
transition ⟨s1, . . . , sn⟩

eÐ→ ⟨s′1, . . . , s′n⟩ if and only if

e ∈
n

⋃
i=1
Ri(si)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e is requested

⋀ e ∉
n

⋃
i=1
Bi(si)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e is not blocked

and
n

⋀
i=1
((e ∈ Ei Ô⇒ si

eÐ→i s
′
i)

´¹¹¹¸¹¹¹¶
affected b-threads

move

∧ (e ∉ Ei Ô⇒ si = s′i)
´¹¹¸¹¹¶

unaffected b-threads
don’t move

).

We set AP = ⋃n
i=1APi and, for (s1, . . . , sn) ∈ S1 × . . .×Sn,

we define:

L(s1, . . . , sn) = L1(s1) ∪ . . . ∪Ln(sn).

Note that when implemented in a standard programming
language, we assume that b-threads do not share data, and
rely solely on events for input and output. This results in the
abstraction that a behavior thread is “in a state” only when
synchronized with others, and that the state transition caused
by executing program instructions between synchronization
points is atomic.

Observe that while each b-thread is deterministic in its
reaction to events, Definition 2 does not specify how events
are selected, and thus there may be more than one run
for a given set of b-threads. There could be multiple ways

to select events and runs, including ones that are random,
planned, or priority-based. The default behavioral execution
infrastructure of LSC (in the Play-Engine and PlayGo tools),
the Java package (BPJ) and the Erlang module (bp) executes
a set of b-threads based on priorities. That is, in each state
of the composite system, the first event that is requested and
is not blocked is selected for triggering.

Definition 3. For the transition system T , defined in Def-
inition 2, a (deterministic) event selection mechanism is a
function f ∶S → E, such that for each s ∈ S there exists a

transition s
f(s)ÐÐ→ s′ of T .

Behavioral programming is designed particularly for the
development of reactive systems [12], and in this context it
is critical to distinguish between environment behavior and
program behavior.

Definition 4. A reactive behavioral program is a set of
b-threads, an event selection mechanism, and a partition of
the events of the b-threads into external events representing
uncontrollable occurrences coming from the environment,
and internal events completely controlled by the program.

We denote the set of external events by Eenv , and the set
of internal events by Eprog. By convention, the patches we
present in this work may block only the triggering of events
in Eprog and may not block events in Eenv .

B. Specifications

We now introduce definitions that assist in the discussion
of desired and undesired runs of behavioral programs.

Definition 5. For a set of b-threads P and a run ρ =
(e1, e2, . . . ,), such that the execution corresponding to
ρ is sinit

e1Ð→ s1
e2Ð→ s2 . . ., we define APtrace(ρ) =

L(sinit)L(s1)L(s2) . . . and define the set of all traces of
P to be APtraces(P) = {APtrace(ρ) ∣ ρ ∈ runs(P)}.

Definition 6. A specification for a behavioral program P is
a linear time (LT) property Φ (i.e. a subset of (2AP)ω). We
say that P satisfies Φ, denoted P ⊧ Φ, iff APtraces(P) ⊆ Φ.

Since this definition assumes infinite runs, when dealing
with systems of finite runs we pad any finite run with the
trace ∅ω .

It is important to note, that the same set of b-threads
can satisfy Φ with one event selection mechanism, and
not with another. We adopt a wider perspective here, and
ensure that the patched set of b-threads satisfies Φ with
all event selection mechanisms. Such patching immediately
detects and fixes any bugs that could have remained hidden
with a certain mechanism, but which may emerge later. An
approach that takes a specific event selection mechanism into
account may also be useful for some applications.

We now narrow the definition of Φ, which can represent
any LT property, to invariants and deadlocks.

Definition 7. An LT Φ property over AP is an invariant if
there is a propositional logic formula ϕ over AP such that
Φ = {A0A1A2 . . . ∈ (2AP)ω ∣ ∀j ≥ 0,Aj ⊧ ϕ}.

Intuitively, invariants are properties of the current state of
the system, and do not reflect the history of events leading to
it. Through invariant checking one can handle regular safety
properties:

Definition 8. An LT property Φ over AP is called a safety
property if for all σ ∈ (2AP)ω −Φ there exists a finite prefix
σ̄ of σ such that

Φ ∩ {σ′ ∈ (2AP)ω ∣ σ̄ is a finite prefix of σ′} = φ.

Intuitively, a safety property states that no “bad” se-
quences of events may happen. Any run that causes such
a sequence has a bad prefix; after it the run does not satisfy
the property no matter how it continues.

Regular safety properties are those for which some finite
automaton recognizes the bad prefixes [2], or, in our case,
there is a b-thread that marks its state as bad when the
bad prefix is recognized. By applying the invariant model-
checker to a program with these threads added, we can
effectively handle general regular safety properties.

Definition 9. We say that a (finite) run ρ = (e1, e2, . . . , en)
causes a deadlock if it leads to a state s that has no enabled
events (all requested events are also blocked).

Much like invariants, deadlocks too are properties of states
in the system, and not of runs.

When patching, we will receive as input a program P and
an invariant Φ. We will implicitly check that the system has
no deadlocks; if it does, the patching algorithm will try to
remove them. In particular, we will make sure that no new
deadlocks are created while patching; otherwise we could
“patch” a system by simply blocking all enabled events at
its initial state.

V. EXTENDING THE MODEL-CHECKING OF INVARIANTS
AND DEADLOCKS

To check that a program P satisfies an invariant and does
not cause a deadlock we follow the algorithm in [2], section
3.3.1, and the implementation in [7].

Any state that violates the invariant or is deadlocked
is marked as “bad”. We construct the state graph of the
program, traverse it using DFS (trimming when arriving at
a cycle), and check that all states reachable from the initial
state are not bad. From each state we explore all enabled
events (which reflects our decision to cater for all possible
event selection mechanisms).

The runtime complexity of this algorithm, implemented
as in [7], is as follows. Let G = (VG,EG) denote the state
graph constructed, and let n be the number of threads and
e = ∣E∣ the number of events in the original program. For
each state ∈ VG, we have to perform n ⋅ e operations in

order to find all its enabled events. In order to determine
if a state was already visited earlier (also needed to detect
cycles), assuming all states are stored in a hash table, we
have to calculate a unique identifier for each state; this costs
an additional log ∣VG∣ operations, if we assume some optimal
labeling of the states that only takes that many bits. Finally,
another ∣VG∣+ ∣EG∣ operations have to be performed to later
traverse the graph. In total, we have:

Tmc = O (∣EG∣ + ∣VG∣ ⋅ (n ⋅ e + log ∣VG∣)) .
This complexity is the minimum price one has to pay for

running a model-checker on a behavioral program. Since our
technique is based on model-checking, it will necessarily be
forever linked in complexity to that of model checking [2],
[19], and the progress made there, for better or for worse.
Tmc thus serves a base point with which to compare the
complexity of our patching algorithms, and we are interested
in how much additional overhead they incur above it.

We actually use a slightly different algorithm. For our
purposes, the usual model-checking that returns a single
violating run does not suffice: we want to explore all runs
that violate the invariant or cause a deadlock.

This is achieved as follows: we traverse the state graph
using the same DFS, but whenever we reach a bad state we
store that information in its predecessor states. Each state
already visited in the graph will thus contain information on
all its bad successors. If the state is reached again, through
another route from the root, we need not traverse its subtree
again: we simply update the relevant states using the data
already stored (see Fig. 3).

abc

bc

c

X

abc bbc

bc

c

X

a

b

c

b a

b

c

b

Figure 3. When a “bad” state is reached, all its predecessors store the relative
path from that point to the violation. When a node in this path is reached through
a different path, the data is propagated. The DFS continues until the root stores all
violating paths.

The added complexity of this algorithm is measured using
the number of violating runs, Υ (OOPSilon: pun intended),
and the depth of the state graph D. For each violating run
we propagate at most D events to the predecessors, causing
an overhead of 1 + 2 + . . . +D per violating run. The total
runtime complexity is thus:

T = Tmc +Υ(1 + 2 + . . . +D) = Tmc +O(Υ ⋅D2).
Finally, if all direct successors of a state are bad, then

the state itself can be considered bad; this is because the

patching technique we discuss will cut off the violating
children, rendering the state a deadlock. We thus add the
following modification: if, during the DFS, all of a state’s
successors are violating or deadlocked, the state itself is
marked as violating; thus its successors can be ignored. The
runtime worst-case complexity remains unchanged.

VI. LINEAR PATCHES

A. Generating Linear Patches

Before discussing patching of general programs, we begin
with the simpler case of finite programs that are loopless:
their state graph contains no cycles.

In a loopless program, every run is finite. As mentioned
earlier, in such cases we add a self-looped trap state and
associate it with the accepting states of the transition system.

Definition 10. A linear wait-block patch for event sequence
(e1, e2, . . . , en, elast), such that elast ∈ Eprog, is a b-thread
with the following properties:

● The patch waits for events e1, . . . , en, blocks elast once
and then terminates.

● If the run deviates from the sequence e1, . . . , en, the
patch terminates.

● The patch never requests events and does not label
states (R(s) = L(s) = ∅ for all s).

Intuitively, the patch is designed to prevent one bad run
from occurring. Events e1, . . . , en will be chosen according
to violating runs found by the model-checker. The patch will
intervene before the last event, causing another event to be
triggered, thus preventing the violation.

The patch only interferes with runs starting with events
e1, . . . , en; other runs remain unchanged. Formally:

Lemma 1 (The Locality Lemma). Let P be a collection
of b-threads, let p be a linear wait-block patch for event
sequence (e1, . . . , en), and let P ′ = P ∪ {p} denote the
patched program. Then for any run ρ of P that does not
start with events e1, . . . , en, the events of ρ constitute a valid
run ρ′ of P ′, and APtrace(ρ) = APtrace(ρ′).

For more details and the proof, see supplemental material
available at http://www.wisdom.weizmann.ac.il/∼amarron/.

The Locality Lemma is our motivation for patching: it
states (in this case, for linear patches) that when we add
a patch to negate a single bad run, other runs remain un-
harmed, meaning that the patch is local. This is an advantage
of our method as compared to traditional, manual, patching:
our patches do not create new errors in unexpected parts of
the code.

The distinct bad runs representing the bug or emanating
from the new requirement are found by model-checking:

Linear Patching(P,Φ):
Run the model checker on (P,Φ)
if P ⊧ Φ then

return P
P’ ← P
for each violating run (e1, . . . , en) do

if ∀i, ei ∈ Eenv then
return Failure

else
Find the largest k such that ek ∈ Eprog

Create a linear wait-block patch p for (e1, . . . , ek)
P ′
← P ′

∪ {p}
return P ′

The idea is straightforward: the model-checker finds all
runs violating Φ and we add a patch per run to prevent them.
The algorithm guarantees that the blocking performed by the
patches creates no deadlocks, by first recursively marking as
“bad” any state that has only “bad” children. Furthermore,
because the model-checker works with respect to all possible
event selection mechanisms, any bugs that emerged after the
patching are fixed. The Locality Lemma guarantees that no
good runs “far away” from the patch are harmed. If the
algorithm returns a patched program, we thus know that it
satisfies the specification Φ and causes no deadlocks.

There is also the case where the algorithm returns a
failure notice, as a result of the model checker returning
a violating run in which there were no program-requested
events. This, of course, means that the program cannot be
repaired through wait-block patching. Formally:

Lemma 2 (The Patchability Lemma). Let P be a loopless
program with state graph G = (VG,EG) and let Φ be
a safety property. Then the following three statements are
equivalent:

1) The algorithm succeeds in returning a patched pro-
gram P ′.

2) There exist linear wait-block patches p1, . . . , pk, such
that P ∪ {pi} ⊧ Φ.

3) There exists a graph G′ = (VG,EG′) with EG′ ⊆ EG

and EG − EG′ ⊆ Eprog, such that no states violating
Φ or causing deadlocks are reachable from the initial
state in G′.

For more details and the proof, see supplemental material
available at http://www.wisdom.weizmann.ac.il/∼amarron/.

Condition (3) means that the original program was “not
too far” from satisfying Φ: it contained some good runs and
some bad runs, and through some blocking the bad runs
could be averted. Observe that the equivalence of (1) and
(2) is really the validity of the algorithm.

The worst case runtime complexity of the algorithm is
just that of the modified model-checker, namely T = Tmc +
O(Υ ⋅D2). This shows the dependence of our algorithm on
the number of violating runs in the original program. If their
number and lengths are small enough our automatic patching
is not much worse than regular model-checking. This also
demonstrates why using this algorithm for synthesis could
be costly. If the program is “far away” from satisfying Φ,

as could be the case when trying to synthesize a program
from scratch (say, from a general program that constantly
requests all possible events), then Υ could be polynomial in
the size of the state graph, greatly slowing the process.

B. Patching for a Specific Event Selection Mechanism

The above algorithm patches the program so that it
satisfies Φ, regardless of the event selection mechanism
used. However, it may be useful to patch the program for
the specific mechanism M to be used, as it could speed
up the patching process, reduce the number of generated
patches, and most importantly, block less events, leaving
open more options for further behavior refinements and
repair, as explained in Fig. 4.

∗

XX X

∗

XX X

a

b c d e

a

d e

Figure 4. In state *, a patch that considers all event selection mechanisms will block
b,c, and e. A patch that considers only, say, an ESM that chooses events alphabetically,
needs to block b and c, but can leave e unblocked, relying on the selection of d.

In this case, the model-checking algorithm is modified to
return as output all violating runs of the original program,
as well as all (and only) violating runs that would be
created by blocking previously discovered bad transitions.
Bad runs that will not be possible in the patched program,
under the specific ESM, are ignored. This technique is
readily applicable also to patches for programs with cycles,
discussed in the sequel.

C. Example: Patching Tic-Tac-Toe

We demonstrate the use of the linear patching algorithm
on the loopless Tic-Tac-Toe behavioral program from [7]. It
is loopless since the fact that each step adds a new move to
the board means that its state graph has no cycles.

Suppose that the original program is developed without a
model-checker. At the time of development, the programmer
is convinced that the program always achieves its goal (never
loses); various testers support this statement. The program
is then deployed. Some months later, a customer defeats it
and sends in the game’s trace. However, the original software
engineer has long quit the firm, and it would take a long time
for a new engineer to repair the code. A suitable solution
would be to apply an automatic patching algorithm to the
malfunctioning software.

To simulate this, we took the complete program from [7],
and omitted the more complex threads — those that handle
situations where our opponent creates, simultaneously, two

ways to win. If the human player does not try the complex
strategy that create such double attacks, the program does
indeed seem to work, but a skilled player can defeat it.

The automatic proof-of-concept tool is easy to use, requir-
ing little modifications to the original program. The input
is the behavioral program and the property Φ, given as b-
threads marking bad states (e.g., victory of the opponent).
The output is code files for new thread instances which are
easy to read and to integrate into the original program (see
Fig. 5).

public patch1() {
events.add(new X(2,2));
events.add(new O(1,1));
events.add(new X(0,0));
events.add(new O(2,0));

}

Figure 5. Example of a wait-block patch generated by the proof-of-concept tool. It
waits for the moves X(2,2), O(1,1), X(0,0), and if they occur, it blocks a O(2,0) move.
The code itself is fairly easy to comprehend; the more complicated details are hidden
away in a parent class, making the auto-generated code legible and comprehensible.

Each such patch inherits from a parent class which
implements its “main” function; see Fig. 6.

public void runBThread() {
for (int i=0; i<events.size()-1; i++) {

bp.bSync(none, all, none);
if (!lastEventWas(events.get(i)))

disablePatch();
}
bSync(none, all, events.getLast());
disablePatch();

}

Figure 6. The patch thread’s main function, runBThread() is part of the patching
library, and is not added to the actual patched program. It waits for events defined by
a particular patch instance (as in Fig. 5), blocking the last event and then terminating.
If the events chosen deviate from those defined in the patch instance, it terminates.

In our example, the patched Tic-Tac-Toe program contains
26 different patches, one of which is demonstrated in the fig-
ure. Subsequent verification by the model checker confirms
that now the specification is indeed satisfied.

VII. PATCHES FOR PROGRAMS WITH CYCLES

A. Generating Patches for Cycles

The correctness of the algorithms for linear patching
relies on the program’s state graph’s having no cycles. As
most reactive systems run indefinitely, periodically returning
to some “idle” state, such systems cannot be patched by
linear wait-block patches. For example, fixing a behavioral
program that enters a bad state after a sequence of events of
the form (a)∗b, will call for infinitely many linear patches.

Our solution is to extend the linear patch associated with a
single sequence of events, into one that can keep track of an
entire hierarchy of paths and cycles in the graph, blocking
the violating event as needed.

Definition 11. Given a state graph G′ = (VG′ ,EG′), two
special vertices marked vinit and vend and an event e ∈
Eprog, a cyclic wait-block patch for G′ is a b-thread with
the following properties:

● It waits for all events chosen by the event selection
mechanism and traverses the graph G′ according to
those events.

● Whenever state vend is reached, it blocks event e once.
● If an event occurs such that there is no edge marked

with that event, it terminates.
● It never requests events and does not label states.

Intuitively, the patch is designed to prevent a family of
bad runs that are similar to one another, in that they reach
their bad state by transitioning from vend via the event e.
The graph G′ will be chosen such that it contains all paths
from vinit to vend, thus rendering a single patch able to
block that entire family of bad runs.

The Locality Lemma holds for the cyclic case as well: all
runs of the original system, apart from those starting in vinit
and ending in reaching the violating state through vend and
e, are valid runs of the patched system. The proof is based
on the fact that in any such run, the generated patch does
not request or block any events, and thus does not affect the
events requested by the program.

Linear patches are a particular case of the cyclic ones, in
which the graph G′ is a path, meaning there is precisely one
way to reach the violating state.

The cyclic patching algorithm is as follows (G denotes
the full state graph traversed by the model-checker):

Cyclic Patching(P,Φ):
Run the model checker on (P,Φ)
if P ⊧ Φ then

return P
for each violating run (e1, . . . , en) do

if ∀i, ei ∈ Eenv then
return Failure

else
Find the largest k such that ek ∈ Eprog

Let send denote the state reached after events e1, . . . , ek−1
Construct the minimal subgraph G′ containing all

paths in G from sinit to send

Create a cyclic wait-block patch p for G′ with states
vinit = sinit, vend = send, and event ek.

P ′
← P ′

∪ {p}
return P ′

Constructing the minimal subgraph G′ is performed
using a modified BFS algorithm. For more details, see
supplemental material at http://www.wisdom.weizmann.ac.
il/∼amarron/.

Lemma 3. If the algorithm returns a patched program P ′,
then P ′ ⊧ Φ.

Proof: Suppose that there exists a run ρ of P ′ violating
Φ. Denote its states s1, . . . , sn, and extract from them a

violating run with no cycles. If si = sj for some j > i,
delete states si+1, . . . , sj . Denote the remaining states as
st1 , . . . , stk . The run corresponding to this state sequence
was found by the model checker, and a patch for some
subgraph G′ which contains this run was created. Since G′

contains all paths from s1 to sn, it also contains ρ. Therefore,
the patch would have blocked the last program-requested
event of ρ, causing a contradiction.

As with the linear case, it is possible for the algorithm
to return a failure notice. The Patchability Lemma, which
characterized programs that could be fixed in the linear case,
holds for the cyclic case as well; its proof is analogous.

The complexity of the algorithm is as follows: The explo-
ration of violating runs costs, as before, O(Tmc +Υ ⋅D2).
Constructing the relevant subgraph for each violating run
costs another ∣VG∣ + ∣EG∣ times Υ runs, yielding:

T = O (Tmc +Υ ⋅D2 +Υ(∣VG∣ + ∣EG∣)) .

Again, this shows our dependence on the number of vi-
olating runs, Υ. The smaller that number, the closer our
complexity is to that of the model-checker; the higher it is,
the closer we are to the notorious, worst-case complexity of
the synthesis problem.

B. Subgraph Representation

The generated code for a linear patch contains only
the list of events to be waited for, followed by the event
to be blocked. This list can be readily understood and
possibly manipulated by a human, say, for documentation or
analysis. Further, the developer may simplify or generalize
the patch; e.g., skip waiting for certain guaranteed events or
consolidate patches into fewer “symbolic” one, using BPJ’s
event filters. However, when a patch traverses a complex
subgraph, gaining such insights is harder. Thus, we propose
to represent the subgraph as a collection of easily readable
linear event scenarios, amenable to human manipulation.
The operation of the cyclic patch will be as before.

Specifically, We use the term line for a finite sequence of
events that occur along some contiguous path in the state
graph, and along which no state is visited twice. We use the
term tail for a line whose last event would lead to a bad
state in the state graph. The program’s state graph, or parts
thereof, are stored as a collection of lines, each containing its
sequence of events, and links to other lines that are reachable
by a single event from the last event in the line. See Fig. 7.

Thus, each patch,

● begins by activating lines containing the initial state;
● waits for all events and traverses active lines;
● deactivates active lines when they are deviated from;
● deactivates a line and activates its successors when the

line’s last event occurs;

A B C F G X

H IDE

e4

e11

e1 e2 e7 e8 e9

e2

e10

e3

e4

e5

e6

Figure 7. A state graph of a buggy program. The model-checker returns the
violating run with events e1, e2, e7, e8, e9. The subgraph of all paths from state A to
state G (see solid states and edges) is decomposed into: line1 = e1, e2 (successors
tail, line2); line2 = e3 (successors line3 , line4); The self-loop line3 = e6
(successors line3, line4); line4 = e4, e5 (successors line2 ,tail) ; tail = e7, e8
(with event to be blocked, e9). In addition to the run found by the model checker, the
patch prevents other runs, e.g., e1, e2, e3, e6, e6, e4, e5, e3, e4, e5

´¹¹¹¸¹¹¹¶
cycles

, e7, e8, e9.

● in a tail, prior to the event leading to the bad state,
blocks that event, waits for one more event, and deac-
tivates the tail.

The line representation can be implemented in a data
structure or in separate patch b-threads, each beginning
with waiting for a unique activation event. This results in
a number of small patches and is readily implementable in
all implementations of behavioral programming.

C. Example: Patching a Coffee Machine

We demonstrate cyclic patching with a simple coffee
vending machine example, which is expected to repeatedly
wait for a coin, wait for a coffee request, and prepare the
coffee. The main requirement is that coffee is never prepared
unless a coin is first inserted. However, if immediately after
power-up the user requests coffee, the machine incorrectly
allows coffee to be requested and prepared infinitely many
times without a coin. When the first coin is inserted, the
machine enters normal operation. The machine’s state graph
is depicted in Fig. 8.

s2 s1

Init
Idle

coffee
req.

coffee
req. power

up

coin
inserted

coin
inserted

coffee
ready

coin
inserted

coin
accepted

coffee
req.

coffee
ready

coffee
req.

coin
inserted

Figure 8. The buggy coffee machine’s state graph. After the PowerUp event, if
a CoffeeRequested event occurs (before a coin is inserted), free coffee can be
obtained infinitely many times, until a coin is inserted. The loop on the right-hand side
of the graph represents the desired operation. The problematic state (marked s1) has
two enabled events: CoffeeReady, which is immediately requested (and selected),
and the environment event CoffeeRequested. We expect the patch to block the
CoffeeReady event.

When the bug is discovered and automatic patching is
attempted, the first step is to have a new b-thread identify
and mark bad states (namely, s2).

The automatic patching algorithm generates a single
patch, corresponding to the subgraph depicted in Fig. 9.

s1 Init
coffee

requested

coffee
requested

power
up

Figure 9. The subgraph of the program’s state graph for which a patch is
created. It shows all paths from the graph’s initial state to state s1, in which event
CoffeeReady must be blocked to prevent violations.

Finally, the graph of the patched program is depicted in
Fig. 10, and the code generated by the proof-of-concept tool
is shown in Fig. 11.

s1

Init Idle

coffee
requested

coffee
requested power

up

coin
inserted

coin
inserted

coffee
ready

coin
inserted

coin
accepted

coffee
requested

Figure 10. The patched program’s state graph (states of the patches themselves
are omitted for clarity). The violating CoffeeReady event has been blocked, and
the bad state no longer exists in the state graph.

public cyclicPatch1() {
line1Events.add(new PowerUp());
line1Events.add(new CoffeeRequested());
line1 = new LineComponent(line1Events);

line2Events.add(new CoffeeRequested());
line2 = new LineComponent(line2Events);

tailEvents.add(new CoffeeReady());
tail = new TailComponent(tailEvents);

line1.addSuccessor(tail);
line1.addSuccessor(line2);
line2.addSuccessor(line2);
line2.addSuccessor(tail);

this.addActiveComponent(line1);
}

Figure 11. The automatically-generated Java code for representation of the subgraph
in Fig. 9. The first line contains events PowerUp and CoffeeRequested, and the
second line contains CoffeeRequested. The tail contains only the event to be
blocked, CoffeeReady. The code is readily understandable.

VIII. LIMITED-DEPTH REPAIR

A. Automatic Repair from Field Error Reports
Many facilities exist for end-users to send reports of

software failures to the software vendor (see, e.g., Fig. 12).
For behavioral programs, we propose a methodology for

using such failure reports in order to cope with the state-
explosion problem inherent to model-checking, and to patch
programs with many violating runs:

Figure 12. Event logs from bug reports are used in patch construction.

● The failure report contains an event log.
● Using the fact that the effect of a patch is local, we

constrain the model checking depth to a neighborhood
of the path of the failure (the bad run), followed by
a limited fan-out of possible continuations, past the
blocked transition.

● This is enforced by a dedicated b-thread, which moni-
tors all events, and when an event occurs that is not
along the reported bad path, it starts counting the
distance from the bug report. When the distance is
greater than a given parameter, the b-thread calls a
model-checker API to prune the search.

● Finally, the patch is generated as above.
Such patching prevents the failure reported by the end-

user, along with any other failures “not far” from it, and
can help when full model-checking and patching consumes
too much resources. The search-depth parameter is key, and
needs to be adjusted per repaired program; higher depth
means repairing more violations, but poorer performances.
It is up to the user to use knowledge of the program’s state
graph, or run tests, in order to come up with the best choice.

B. Example: Dining Philosophers

Consider the dining philosophers problem [5]. A be-
havioral implementation thereof includes the events of a
philosopher picking up and putting down a given fork, a
b-thread for the behavior of each philosopher and a b-thread
for each fork. Each philosopher’s b-thread is subject to a
strict event sequence: pick up one fork nondeterministically,
pick up the other, put down one fork nondeterministically,
and then the other. Each fork’s b-thread waits for events
that change the state of the fork, and blocks illegal events
(e.g., a second picking up, or, a putting down by the
“wrong” philosopher). In [7] we model-check this problem
and variations thereof for safety and liveness properties.

The reported bug fixed is the classical deadlock where
all philosophers pick up the fork on their left. The table in
Fig. 13 shows the results of patching for the single bad run
that we gave the patcher.

IX. RELATED WORK

The research in [15], [17], [18] presents fault localization
and automatic repair of programs, where a set of software
components that are suspected to cause a fault is replaced
by a set of synthesized components, such that the resulting

Search
Depth 3 Philosophers 6 Philosophers 9 Philosophers

3
3 patches
3 loops
0.5 seconds

1 patches
2 loops
4.2 seconds

1 patches
2 loops
30 seconds

4
15 patches
30 loops
1.2 seconds

2 patches
4 loops
22 seconds

3 patches
6 loops
4.5 minutes

5
20 patches
380 loops
3.2 seconds

12 patches
1200 loops
2 minutes

12 patches
2580 loops
45 minutes

Figure 13. Patching the dining philosophers problem using bounded depth patching.
Receiving a bug report (e.g., each philosopher picked up a single fork), the algorithm
searches for event sequences that deviate from, or continue, the event trace in the bug
report by no more events than the search depth parameter. The patches handle cycles
discovered within the search depth (e.g., one of the philosophers completing a full
cycle of picking up and putting down her two forks, while the others do not proceed).
The tests were carried out on a PC with a Intel Quad Core Q6600 CPU @ 2.40GHz.

system is guaranteed to meet the full specification. Auto-
matic repair of concurrency bugs (e.g., accessed to shared
memory), is presented in [14]. The detection mechanism
uses bad runs associated with bug reports, and the analy-
sis involves actual execution. The repair is manifested in
modification to existing code. Genetic-programming-based
repair of legacy C programs is demonstrated in [21]. The
repair relies on changes to existing code in order to correct
problems that were assumed to be local in nature. In [1],
genetic-programming is combined with co-evolution of the
test cases against which the program is evaluated. Naturally,
any work on automatic-repair would be considered a partic-
ular case of program synthesis [3], [16].

As for other approaches for coordinating simultaneous
behaviors, such as Esterel, BIP or Linda (see related work
in [9], [10] for a comparison of behavioral programming
with these approaches), we believe that comparable localized
repair mechanisms would be possible. The key would be
implementing the equivalent of blocking which, combined
with ability to subscribe to all events, is central to our
solution. This, of course, is possible, as it was in Java and
Erlang, and could also benefit other aspects of incremental
development in these environments.

X. CONCLUSION AND NEXT STEPS

The contribution of the present paper is in the proposed
automated approach, in which faulty components are nei-
ther identified nor modified. Instead, the system is non-
intrusively augmented with additional components, to yield
desired overall system behaviors. The entire approach is
made possible by the incrementality and modularity of
behavioral programs. The new components are readily un-
derstandable by humans, and can be documented, enhanced,
or generalized as part of standard development. The gen-
erated patches can then be distributed to users without re-
distributing the original software. Finally, contributing to the
on-going and up-hill battle with state explosion, we propose

a methodology and a practical technique for constructing
local patches using limited-depth model-checking.

This research is a step in the direction of developing
methodologies and tools for the repair of behavioral pro-
grams. An important next step is to enrich the tool with
interactive capabilities, allowing the developer to examine
the state graph and enhance the proposed repairs: consol-
idating similar patches, generalizing or constraining patch
functionality, or perhaps changing existing code after all.

Future research problems include repairing the pro-
gram with regard to time-related and liveness proper-
ties and integration with other formal methods tools and
techniques, including other synthesis algorithms, symbolic
model-checking, and compositional verification. Our tool
could be combined with Java Pathfinder [20] or other tools
to explore support of richer inter-process communication
beyond solely behavioral events, and possibly solving con-
currency problems among b-threads, as in [14].

We hope that with further developments in incremental,
non-intrusive development, supported by powerful repair
automation, the task of software maintenance may eventually
shed its present (often lackluster) image, becoming a re-
warding undertaking, allowing software engineers to quickly
address customer needs in a productive, satisfying manner.

ACKNOWLEDGMENTS

We thank A. Kantor, S. Maoz, Y. Sa’ar, S. Szekely and G.
Wiener for their valuable suggestions on the manuscript, and
the anonymous reviewers for their constructive comments.
The research of D. Harel, G. Katz and A. Marron was
supported by The John von Neumann Minerva Center for
the Development of Reactive Systems at the Weizmann
Institute of Science, and was partly funded by an Ad-
vanced Research Grant from the European Research Council
(ERC) under the European Community’s 7th Framework
Programme (FP7/2007-2013). The research of G. Weiss was
supported by the Lynn and William Frankel Center for CS
at Ben-Gurion University and by a reintegration (IRG) grant
under the European Community’s FP7 Programme.

REFERENCES

[1] A. Arcuri and X. Yao. A Novel Co-evolutionary Approach
to Automatic Software Bug Fixing. In Proc. 10th IEEE
Congress on Evolutionary Computation (CEC), pages 162–
168, 2008.

[2] C. Baier and J.-P. Katoen. Principles of Model Checking.
MIT Press, 2008.

[3] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar.
Synthesis of Reactive(1) Designs. Journal of Computer and
System Sciences. In press.

[4] W. Damm and D. Harel. LSCs: Breathing Life into Message
Sequence Charts. J. on Formal Methods in System Design,
19(1):45–80, 2001.

[5] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes.
Acta Inf., 1:115–138, 1971.

[6] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-
Out of Behavioral Requirements. In Proc. 4th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages
378–398, 2002.

[7] D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-
Checking Behavioral Programs. In Proc. 11th Int. Conf. on
Embedded Software (EMSOFT), pages 279–288, 2011.

[8] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer,
2003.

[9] D. Harel, A. Marron, and G. Weiss. Behavioral Programming.
Communications of the ACM. To appear.

[10] D. Harel, A. Marron, and G. Weiss. Programming Coor-
dinated Scenarios in Java. In Proc. 24th European Conf.
on Object-Oriented Programming (ECOOP), pages 250–274,
2010.

[11] D. Harel, A. Marron, G. Weiss, and G. Wiener. Behavioral
programming, decentralized control, and multiple time scales.
In Proc. of the SPLASH Workshop on Programming Systems,
Languages, and Applications based on Agents, Actors, and
Decentralized Control (AGERE!), pages 171–182, 2011.

[12] D. Harel and A. Pnueli. On the Development of Reactive
Systems, volume F-13 of NATO ASI Series. Springer-Verlag,
New York, 1985.

[13] D. Harel and I. Segall. Planned and Traversable Play-Out:
A Flexible Method for Executing Scenario-Based Programs.
In Proc. 13th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 485–
499, 2007.

[14] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Auto-
mated Atomicity-Violation Fixing. In Proc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI), 2011.

[15] B. Jobstmann, A. Griesmayer, and R. Bloem. Program Repair
as a Game. In Proc. 17th Int. Conf. on Computer Aided
Verification (CAV), pages 226–238, 2005.

[16] A. Pnueli and R. Rosner. On the Synthesis of a Reactive
Module. In Proc. 16th ACM Symposium Principles of
Programming Languages (POPL), pages 179–190, 1989.

[17] S. Staber, B. Jobstmann, and R. Bloem. Diagnosis is Repair.
In Proc. 16th Int. Workshop on Principles of Diagnosis, pages
169–174, 2005.

[18] S. Staber, B. Jobstmann, and R. Bloem. Finding and Fixing
Faults. Correct Hardware Design and Verification Methods,
3275:35–49, 2005.

[19] A. Valmari. The State Explosion Problem. Lectures on Petri
Nets I: Basic Models, Reisig, W. & Rozenberg, G. (eds.),
Lecture Notes in Computer Science, 1491:429–528, Springer-
Verlag, 1998.

[20] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model Checking Programs. Automated Software Engineering,
10:203–232, 2003.

[21] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen. Auto-
matic Program Repair with Evolutionary Computation. Com-
munications of the ACM, 53:109–116, 2010.

[22] G. Wiener, G. Weiss, and A. Marron. Coordinating and
Visualizing Independent Behaviors in Erlang. In Proc. 9th
ACM SIGPLAN Erlang Workshop, 2010.

